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ABSTRACT 

 

Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, 

SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In 

addition to divergent subcellular localisations, distinct differences in the mechanistic 

properties and substrate requirements of individual family members have been unravelled. 

SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. 

Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has 

been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in 

the sensitivity to currently available inhibitory compounds have been reported. Though far 

from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in 

particular based on studies in mice, has been significantly increased over the last years. Based 

on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic 

concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will 

discuss in this review. 
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1. Introduction 

The genes encoding signal peptide peptidase (SPP) and the related signal peptide peptidase-

like (SPPL) proteases were identified in a bioinformatic screen searching for homologues of 

the presenilins [1, 2], the catalytically active subunit of the -secretase complex. In parallel, 

characterisation of a proteolytic activity processing signal peptides after their liberation from 

nascent proteins in the endoplasmic reticulum (ER) identified SPP as the responsible protease 

by biochemical approaches, followed by computational identification of its homologues [3]. 

SPP/SPPL proteases and presenilins are multi-pass transmembrane proteins with 9 predicted 

transmembrane domains (TMDs) that share conserved (Y/F)D, GxGD and PAL motives 

which constitute their catalytic center (Fig. 1) [3-7]. These signature motives localise to TMD 

6, 7 and 9, respectively. Mutation of either aspartic residue inactivates these aspartyl 

intramembrane proteases that are also referred to as GxGD proteases [8, 9]. The GxGD 

protease family is completed by the more distantly related bacterial type IV prepilins (TFPPs) 

and the archeal pre-flagellin peptidases (PFPs) [10, 11]. In humans, seven GxGD proteases 

have been identified. These include the two presenilins, Presenilin 1 and Presenilin 2, and five 

members of the SPP/SPPL family: SPP, SPPL2a, SPPL2b, SPPL2c and SPPL3. These GxGD 

proteases are conserved in many other eukaryotes like fungi, protozoa, plants and animals. 

However, the number of paralogues differs between individual species. While mammals 

encode five members of the SPP/SPPL family, zebrafish, for instance, only exhibits three 

SPP/SPPL proteases with the SPPL2a/b/c subfamily being represented by a single SPPL2 

protease [12]. In Drosophila melanogaster, this subfamily is even lacking completely and 

solely genes encoding orthologues of human SPP and SPPL3 are found. In Plasmodium 

falciparum, the protozoan parasite causing Malaria, only one SPP orthologue is detectable 

[12]. In contrast, plants possess a much more diverse set of SPP/SPPLs than mammals [13], 



4 
 

indicating that the individual members have adopted here more distinct functions, possibly 

some of them being unique for plant cells and not-conserved in mammalian cells. 

SPP/SPPL proteases are most likely catalytically active as monomers or homomeric 

dimers / multimers, since exogenous expression of these enzymes significantly increases their 

proteolytic capacity [4-6, 14-16]. In contrast exogenous expression of presenilins results in 

replacement of the endogenous proteins and only minor increase of catalytic activity, because 

presenilins require the formation of a high molecular weight complex with Aph-1 (anterior 

pharynx defective 1), Pen-2 (presenilin enhancer 2) and Nicastrin, to provide catalytic activity 

[17]. During formation of this -secretase complex in the ER the respective presenilin is 

autocatalytically endoproteolysed within its large hydrophilic loop between TMD 6 and 

TMD 7 [18]. This loop most likely constitutes a steric hindrance for substrate entrance of the 

substrate to the catalytic site. Since correct assembly of the γ-secretase complex seems to be a 

prerequisite for presenilin autoproteolysis, this may result in a structural change in the 

presenilin molecule that induces this process. While the hydrophilic loop between TMD 6 and 

TMD 7 of the presenilins is cytosolic, the corresponding loop in SPP/SPPL proteases is 

directed towards the lumen/ extracellular space and is comparably short [19]. Thus, it may not 

interfere with the catalytic centre, making the SPP/SPPL proteases independent of the 

constraint to form a complex and get endoproteolysed. The altered orientation of the loop 

between TMD 6 and TMD 7 reflects an overall inverted topology of SPP/SPPL proteases 

compared to presenilins. While the N-termini of SPP/SPPL proteases face the 

luminal/extracellular space, the C-termini are directed towards the cytosol [19]. This 

difference in topology might also account for the opposing substrate preferences of the two 

protease families: While presenilins seem to exclusively accept substrates with 

transmembrane domains in type I orientation (Nout), all SPP/SPPL substrates identified so far 

comprise transmembrane domains with type II orientation (Nin) [3, 19-23]. 
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The -secretase complex as well as several SPP/SPPL proteases participate in a two-

step proteolytic process, termed regulated intramembrane proteolysis (RIP) [24]. In the first 

step of RIP, either the ectodomain/luminal domain of a single-pass transmembrane protein is 

liberated (shedding) or a loop between two adjacent TMDs of a multi-pass transmembrane 

protein is cut. As a result, protein fragments with rather short extracellular/luminal domains, 

which are still integral to the membrane, are generated. The second step of RIP is catalysed by 

intramembrane proteases that hydrolyse peptide bonds within or close the extracellular border 

of the TMD as illustrated in Fig. 1. This cleavage results in the liberation of an extracellular/ 

luminal peptide and an intracellular peptide (ICD) that is released to the cytosol [24]. Like 

presenilins, SPP and SPPL2b strictly depend on substrates with a short ectodomain and, thus, 

either on the first step of RIP or on substrates that naturally occur with short ectodomains [14, 

25-28]. As suggested by the analysis of CD74 processing [16, 29], SPPL2a most likely 

exhibits similar requirements regarding the length of the substrate ectodomain as SPPL2b, 

though this specific aspect has not been investigated as systematically as for SPPL2b [14]. 

Surprisingly, SPPL3 accepts substrates independent of their ectodomain length and is capable 

of acting like a sheddase in the RIP cascade [6, 30, 31], which in principle enables it to 

generate bona fide substrates for other intramembrane proteases. However, this, until now, 

has only been demonstrated for a viral substrate, the foamy virus envelope protein (FVenv) 

[6] and not for cellular SPPL3 substrates. Cleavage of substrates with rather long ectodomains 

by SPPL3 is a unique characteristic of an intramembrane aspartyl protease, and has only been 

attributed to rhomboids, which are intramembrane serine proteases [32]. However, SPPL2c 

remains an orphan protease and since no substrates have been identified, its substrate 

requirements currently remain elusive. 

Presenilins and SPPL2b utilise multiple cleavages within the TMDs of their substrates 

to release the products from the membrane [4, 33, 34]. Starting from the C-terminal end of the 
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substrates TMD, these proteases release their first cleavage product with an initial cut and 

proceed in a consecutive manner towards the N-terminal end of the substrates TMD until the 

remaining hydrophobic sequence is short enough to detach from the membrane releasing the 

second cleavage product [35]. However, neither the initial cleavage nor the consecutive 

cleavages of these intramembrane proteases are precise, resulting in cleavage products with 

variable N- and C-termini, respectively [4, 34]. In addition, the processivity and cleavage 

pattern of these proteases can be modulated by certain mutations as well as chemical 

compounds [18, 33, 36] and even the lipid environment as demonstrated for the presenilins 

[37]. To what extent the lipid environment impacts on substrate processing by SPP/SPPL 

proteases and whether SPPL3 and SPPL2c apply a similar cleavage mechanism to process 

their substrates remains to be investigated. 

In line with the multiple cleavage sites, GxGD proteases do not recognise a consensus 

site based on the primary structure of the substrate, but rather depend on secondary structure 

elements within the substrates TMDs and juxtamembrane domains [14, 16, 26, 38-41]. Helix-

destabilizing residues and polar residues like serine and cysteine residues in the substrate’s 

TMD promote cleavage by SPP, SPPL2a and SPPL2b [16, 38, 42, 43]. In addition, SPPL2a 

and SPPL2b seem to require certain determinants within the juxtamembrane domains of their 

substrates for efficient recognition [14, 16]. Palmitoylation of cytosolic, membrane-proximal 

cysteine residues may influence access of the substrate to the intramembrane protease and/or 

to alternative degradation pathways, however, this does not seem to be a prerequisite for 

cleavage by SPPL2a/b per se [16, 44]. Currently these conclusions are based on a few studies 

on single enzyme/substrate combinations. For a general perspective and to allow computer-

based substrate predictions, intensive further studies on many more enzyme/substrate 

combinations are required. 
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Other than the two presenilins, which embedded in -secretase complexes mainly 

localise to the cell surface and later secretory as well as endosomal compartments [45, 46], the 

subcellular localisations of the individual SPP/SPPL proteases differ significantly. While SPP 

and SPPL2c localise to the ER, SPPL3 resides in the Golgi [47]. SPPL2a is transported to late 

endosomes/lysosomes and SPPL2b is located the plasma membrane [47, 48]. SPP contains a 

KKXX motif close to its C-terminus [3] presumably involved in mediating ER retention of 

this protease. However, this has not yet been confirmed experimentally. Lysosomal targeting 

of SPPL2a critically depends on a canonical C-terminal tyrosine-based sorting signal as 

documented by a mislocalisation of respective mutants [48]. How sorting of the other 

SPP/SPPL family members is controlled remains to be investigated.  

To date, only a limited number of substrates cleaved by SPP/SPPL proteases have 

been identified. These were comprehensively compiled and listed in a recent review [23]. In 

many cases, the characterisation and validation of the identified cleavage events is limited to 

cell-based experimental systems. Thus, it remains to be confirmed to what extent processing 

of these substrates plays a role under endogenous conditions in vivo and if this fulfils any 

regulatory downstream function. Since this review aims at discussing the potential of 

SPP/SPPL proteases as pharmacological targets, we will here specifically highlight those 

substrates and protease functions which have been clearly linked with (patho)-physiologically 

relevant processes and/or observed phenotypes in model organisms. In addition, potential, not 

yet explored connections between primarily in vitro characterised substrates and physiological 

pathways will be discussed where appropriate. 
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2. Known physiological functions of SPP/SPPL proteases 

Different model organisms ranging from C. elegans to mice, have been employed to study 

loss-of-function phenotypes of SPP/SPPL proteases. As mentioned, the number of SPP/SPPL 

family members is significantly lower in non-mammalian and non-vertebrate organisms, 

becoming especially evident in a reduced complexity or even entire absence of the SPPL2 

subfamily. Therefore, in particular for these three proteases mice may represent a more valid 

experimental system in order to draw conclusions about functions of the human SPP/SPPL 

orthologues and the therapeutic potential of their inhibition. Currently reported mouse models 

analysing the in vivo functions of SPP/SPPL proteases are summarised in Table 1.  

 

2.1 SPP 

As documented in its name, SPP was initially discovered for its ability to process signal 

peptides derived from several proteins [3, 23]. It is still unclear whether all signal peptides can 

be cleaved by SPP and this protease represents the universal clearance for these fragments or 

whether this acts in conjunction with other degradative pathways and only selected signal 

peptides are cleaved by SPP. Beyond signal peptides, recent discoveries have significantly 

enhanced our knowledge of SPP functions [23]. This includes the identification of selected 

ER-localised tail-anchored (TA) proteins like Heme oxygenase 1 (HO-1) as novel SPP 

substrates [28, 49]. Whether SPP cleavage of TA proteins fulfils primarily a degradative 

purpose to clear these proteins from the ER membrane or whether the liberated cleavage 

products exhibit biological functions may need to be individually addressed. In case of HO-1, 

nuclear translocation of the released ICD has been observed [49]. In cancer cells, this 

fragment was found to enhance proliferation and migration [49]. SPP forms complexes with 

components of the ER-associated degradation (ERAD) pathway like the pseudoprotease 
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Derlin-1 as well as the ubiquitin ligase TRC8 [50, 51]. Mechanistically, SPP can modulate 

ERAD by cleaving the ERAD regulator X-box binding protein 1 (XBP1u) [50], which can 

inhibit the unfolded protein response (UPR)-inducing functions of its spliced isoform XBP1s. 

However, SPP may also actively participate in the ERAD process after associating with 

misfolded membrane proteins in large oligomeric complexes in the ER membrane [15]. In 

yeast, SPP was found to regulate cellular levels of several plasma membrane nutrient 

transporters as exemplified by the zinc transporter Zrt1 by inducing their degradation in the 

ER [52]. The model proposed by Avci et al. involves a direct proteolytic action of yeast SPP 

on these multi-pass membrane proteins finally enabling their clearance from the ER 

membrane. To what extent mammalian SPP can regulate cellular nutrient uptake in a similar 

way is currently unclear. 

Though these diverse molecular functions of SPP have been primarily characterised in 

cultured cells, several knockdown or knockout studies in different model organisms have 

highlighted the importance of SPP. Depletion of SPP in C. elegans resulted in embryonic 

lethality and molting defects [53] Similarly, a SPP knockout in Drosophila was associated 

with impaired larval development and lethality [54]. In zebrafish, knockdown of SPP caused 

cell death in the nervous system [55] and in mice a constitutive knockout of this protease led 

to embryonic lethality after day 13.5 d [51], however without apparent histological 

abnormalities in the SPP-/- mouse embryos [51]. 

In none of these models, it is known which of the described molecular functions of 

SPP are compromised and to what extent these contribute to the described phenotypes, in 

particular the embryonic lethality in mice. This could reflect the impairment of a specific 

pathway with a critical role in development like the defective Notch signalling in presenilin-

deficient mice [56, 57]. Alternatively, a generalised failure to degrade signal peptides or a 

major dysregulation of the ERAD and UPR systems seems also conceivable. Interestingly, at 
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the cellular level a constitutive knockout of SPP in the colorectal carcinoma cell line HCT116 

was tolerated [28]. Apart from growing slightly slower and being less adherent, the cells 

appeared healthy. This indicates that at least in immortalised, continuously proliferating cell 

lines a loss of SPP and any potentially resulting proteostatic dysbalance can be compensated. 

Therefore, final conclusions which of the outlined SPP functions are really patho-

physiologically relevant and which can be easily taken over by other pathways cannot be 

drawn yet. In particular, conditional approaches, which will allow to circumvent the 

embryonic lethality by generating a tissue-specific and/or inducible SPP knockout in mice, 

should be helpful in this context. 

 

2.2 SPPL2a: 

In contrast to SPP, constitutive SPPL2a knockout mice are viable, fertile and not overtly 

compromised [29, 58, 59]. They exhibit a major immunological phenotype which has been 

independently observed and characterised in three different strains of SPPL2a-deficient mice 

which were generated by gene targeting [29] or derived from a N-ethyl-N-nitrosourea (ENU) 

mutagenesis screens [58, 59]. All three models exhibited a characteristic B cell differentiation 

defect that manifests during the so-called transitional (T) stages of splenic B cell maturation 

which these cells have to pass through prior to becoming mature, antigen-reactive B cells. 

Whereas the T1 population was largely preserved in SPPL2a-/- mice, T2 B cells as well as 

subsequent stages like the mature B cells were significantly depleted [29, 58, 59]. 

Importantly, in addition to this maturation block of the follicular B cells also innate-like B cell 

populations like the marginal zone and B1 B cells were significantly reduced in SPPL2a-

deficient mice [29, 58, 59] so that these mice are characterised by a global depletion of B 

lymphocytes. Since also the remaining B cells exhibit a major functional deficit, antibody 

production and humoral immune responses are significantly impaired. In addition, SPPL2a-/- 
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mice exhibit a concomitant reduction of dendritic cells (DCs), primarily of the myeloid DCs 

whereas the plasmacytoid DCs were less or not affected depending on the model [58-60]. 

Both phenotypes reflect cell-intrinsic consequences of SPPL2a-deficiency which could be 

linked with the disrupted proteolysis of CD74, the invariant chain of the MHCII complex 

(MHCII). As its canonical function, the type II transmembrane protein CD74 mediates 

assembly and intracellular transport of MHCII [61]. In the antigen-processing compartments, 

the concerted action of several endosomal proteases degrades the luminal domain of CD74 

thereby allowing peptide loading of MHCII [61]. Importantly, a membrane-bound CD74 NTF 

remains from this process which depends on SPPL2a for its removal from the membrane as 

demonstrated by a massive accumulation of this fragment in SPPL2a-deficient B cells and 

DCs [29, 58-60]. Upon SPPL2a-mediated proteolysis of CD74, a CD74 ICD is released into 

the cytosol which is capable of entering the nucleus [62-64]. Regulatory functions of this 

cleavage fragment, in particular in B cells, have been proposed [62, 65, 66], however, have 

remained in part controversial with regard to a direct effect on the NFkB pathway [64]. 

Though it may not be completely excluded that the failure to release this cleavage fragment 

contributes to the described phenotypes of SPPL2a-/- in a minor way, the significant 

phenotype amelioration in SPPL2a-CD74 double-deficient mice highlighted the accumulation 

of the unprocessed CD74 NTF as the major underlying cause [29]. The biochemical role of 

SPPL2a in degrading the CD74 NTF is preserved in human B cells, which was documented in 

EBV-lymphoblastoid cell lines derived from patients with a genomic chromosomal 

microdeletion encompassing exon 1 of the SPPL2a as well as part of the neighbouring AP4E1 

gene [67]. In the absence of any clinical information on the haematologic and immunological 

status of these patients the putative phenotype caused by a loss of SPPL2a in humans 

currently remains elusive. 
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In addition to the described immunological phenotype, SPPL2a-/- mice exhibit an 

impaired mineralisation of their tooth enamel which is associated with a characteristic, 

macroscopically detectable tooth decolorisation [68]. As supported by distinct histological 

changes, this most likely reflects a failure of the enamel-producing cells, the ameloblasts, 

during the maturation stage where reabsorption of the organic enamel matrix needs to take 

place [68]. How this phenotype may be linked to any substrate or protease-independent 

function of SPPL2a is currently unclear. With regard to a potential therapeutic modulation of 

SPPL2a activity, the role of SPPL2a in tooth enamel production may not be too limiting since 

in humans this process is completed during childhood and does not continue throughout 

lifetime as in rodent incisors. 

Based on a ubiquitous tissue expression of SPPL2a in mice [60], the identification of 

additional patho-physiologically relevant functions of this protease may be anticipated. 

Similarly, the in vivo relevance of several substrates that have been primarily characterised in 

cellular systems [23], often employing overexpression, will require further investigations. 

These include Tumor necrosis factor α (TNF) [4, 47], Fas ligand (FasL) [5] as well as the 

proteins ITM2B/Bri2 [69], TMEM106B [70] and Neuregulin 1 type III [71]. 

 

2.3 SPPL2b: 

In contrast to SPPL2a, much less is known about the physiological functions of SPPL2b. In 

cell-based experimental systems utilising co-overexpression of substrates and proteases, both 

proteases exhibit significantly overlapping specificities and cleavage properties. This is also 

the case for the CD74 NTF which is efficiently cleaved by both SPPL2a and SPPL2b under 

these conditions [60]. However, in vivo depletion of SPPL2b does not influence the levels of 

this fragment [60]. Consequently, SPPL2b-deficient mice display no alterations in B cell 
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development or function as observed in SPPL2a-/- animals. Furthermore, combined ablation 

of SPPL2a/b does not aggravate the biochemical and physiological consequences observed in 

the SPPL2a single-deficient mice, arguing for at least partially non-redundant functions of 

both GxGD proteases in this cell type which is most likely caused by their differential 

subcellular distributions. 

SPPL2a/b double-deficient mice are viable, without any overt disability and exhibit 

the phenotypic changes associated with the loss of SPPL2a (Table 1) [60]. However, so far no 

phenotypes specifically associated with SPPL2b deficiency have been described. As 

mentioned above, for many in vitro characterised substrates like TNF, Bri2 and Neuregulin it 

is not yet clear to what extent SPPL2a and SPPL2b contribute to these cleavage events under 

endogenous conditions in vivo. Furthermore, the functional consequences largely remain 

elusive to date. In the case of TNF, the proteolytically released ICD may undergo nuclear 

translocation [47, 64, 72] and was proposed to influence expression of the cytokine IL-12 

[47]. Consequently, inhibition of SPPL2a/b by (Z-LL)2-ketone or siRNA-mediated 

knockdown of these proteases reduced the IL-12 release of DCs upon stimulation by 

lipopolysaccharide. It remains to be examined how relevant this pathway is in response to a 

broader range of pathogenic stimuli as well as in the course of immune reactions in vivo and if 

the described effects on IL-12 secretion can be recapitulated in murine genetic models of 

SPPL2a/b deficiency. 

Based on the high expression of SPPL2b in the central nervous system [60], in 

particular the physiological relevance of SPPL2b-dependent Bri2-processing will deserve 

further attention. Mutations in the Bri2 gene have been shown to be causative for amyloid 

deposition in familial British and Danish dementia [73, 74]. Furthermore, Bri2 has been 

discussed to act as chaperone for the amyloid precursor protein (APP) thereby reducing 

generation of the cytotoxic Aβ peptides in HEK cells stably overexpressing APP [75]. These 
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findings established Bri2 as modulator of amyloid neurodegenerative diseases. Notably, 

SPPL2b-dependent proteolysis liberates a small Bri2 ICD to the cytosol [69], that may 

translocate to the nucleus and act as transcriptional regulator [64]. Along this line, 

overexpression of Bri2 in HEK cells was found to downregulate mRNA levels of BACE1 

(β-site APP cleaving enzyme 1) in addition to inducing lysosomal degradation of the BACE1 

protein [76]. Furthermore, Bri2 was shown to upregulate expression of the Aβ-degrading 

protease Insulin Degrading Enzyme (IDE) [77]. It will certainly be of interest to evaluate a 

potential role of the liberated Bri2 ICD as well as the membrane-bound NTF prior to its 

cleavage by SPPL2a/b in these contexts. Altogether, the physiological role of the proteolytic 

processing of Bri2 is not completely understood. Future studies will help to clarify if SPPL2b 

via cleavage of Bri2 or possibly also other substrates may play a modulating role in 

neurodegenerative processes. SPPL2a/b double-deficient mice do not show any major 

neuronal loss as it could be detected by routine histological examination (unpublished 

observation). However, it may be anticipated that absence of SPPL2a/b - though well 

compensated under basal conditions - may critically affect disease-relevant pathways in the 

brain, but also other organ systems, when mice are challenged in a certain way. 

 

2.4 SPPL2c: 

Evidence for SPPL2c protein expression under endogenous conditions is still pending. 

Based on the intronless gene architecture, SPPL2c was suggested to represent a redundant 

pseudogene. Overexpressed SPPL2c localises to the ER like SPP [47]. Therefore, a central 

question will be if substrate spectra and molecular functions of SPP and SPPL2c can be 

delineated from each other or whether SPPL2c merely represents a SPP backup system. To 

date, proteolytic activity of SPPL2c has not been demonstrated and similarly the physiological 

functions of SPPL2c remain unknown. In a tissue microarray analysis, SPPL2c expression 
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was found in human brain, heart, skin, adrenal cortex, mammary gland and testis [19]. No 

knockout studies in mice have been reported yet. In a genome-wide association study [78], a 

single nucleotide polymorphism (SNP, rs17690703) close to the coding region of SPPL2c 

was found to be significantly associated with the susceptibility to idiopathic pulmonary 

fibrosis (IPF). IPF is a rare disease of unknown aetiology characterised by a fibrotic process 

in the lung interstitium which is associated with a high mortality if not treated by lung 

transplantation [79]. Lung fibrosis can also occur in the context of systemic diseases. 

Interestingly, the respective SNP was not significantly associated with the occurrence of 

interstitial lung disease in the context of systemic sclerosis [80]. Proof of SPPL2c protein 

expression in the lung is pending and it is therefore unclear how SPPL2c could be part of the 

IPF disease process, especially since a diverse range of cell types like alveolar epithelial cells, 

fibroblasts and immune cells is involved [79]. Thus, further work is needed to substantiate a 

pathophysiological relevance of the reported genetic association. 

 

2.5 SPPL3: 

The ability of SPPL3 to cleave substrate proteins without the requirement of a preceding 

ectodomain shedding has introduced unexpected mechanistic diversity into the SPP/SPPL 

protease family. Following the initial discovery of this property upon cleavage of the Foamy 

virus envelope protein [6], this was subsequently corroborated by the identification of cellular 

substrates [30, 31]. SPPL3 is able to cleave a large set of Golgi-resident glycosyltransferases 

and glycan-modifying enzymes which are involved in protein N- and O-glycosylation as well 

as glycosaminoglycan biosynthesis. Major insights were provided by a mass spectrometric 

substrate identification approach utilising the ‘secretome protein enrichment with click sugars 

(SPECS)’ method [81]. All SPPL3 substrates which were identified in this screen and further 

experimentally validated are type II transmembrane proteins, as comprehensively listed in a 
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recent review [23]. Mechanistically, SPPL3-mediated intramembrane cleavage induces the 

secretion of the substrate’s ectodomain, thereby reducing the intracellular levels of active 

glycosyltransferases [30]. Consequently, SPPL3 overexpression leads to hypoglycosylation of 

cellular proteins in the secretory pathway and, vice versa, a depletion of SPPL3 to enhanced 

glycan-synthesis [30]. Based on these studies, SPPL3 has emerged as a major regulator of 

cellular protein glycosylation. 

In light of such a critical function, it may not be too surprising that SPPL3 

overexpression and knockdown are not well tolerated in cultured cell lines and associated 

with significant cytotoxicity [23]. As first in vivo model, a knockdown of SPPL3 in zebrafish 

leading to a neuronal cell death phenotype was reported [55]. In mice on a C57BL/6J 

background, constitutive ablation of SPPL3 led to lethality within the first days of life for 

which the reason is currently unknown [82]. This perinatal lethality was mirrored in mice 

homozygous for a D271A mutation within the catalytical GxGD motif indicating a critical 

role of the SPPL3 proteolytic activity [82]. In contrast, SPPL3-deficient mice on a mixed 

C57BL/6;129S5 background are viable and rather mildly affected with growth retardation, 

haematologic abnormalities and sterility in male homozygous mice [83]. Differential viability 

of knockout mice depending on the genetic background has been observed in several cases 

[84]. Based on its role as sheddase of glycosyltransferases and glycan-modifying enzymes, 

glycoproteins in tissues of SPPL3-/- mice are hyperglycosylated [30]. To what extent this is 

associated with the mentioned phenotypes and which target proteins are specifically involved 

remains to be analysed.  

Among the major immune cell populations, SPPL3 expression is particularly 

prominent in natural killer (NK) cells [82]. By specifically ablating SPPL3 expression in the 

haematopoetic system or NK cells using a conditional SPPL3 knockout and Vav1-iCre and 

NKp46-iCre alleles, respectively, Hamblet et al. could demonstrate a cell-autonomous role of 
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SPPL3 in NK cell maturation and function [82]. In these models, SPPL3 deficiency led to a 

significant reduction of peripheral NK cells in spleen and liver, which was caused by a 

reduced proliferation of CD27+CD11b- precursors in the bone marrow and impaired survival 

of CD27+CD11b+ and CD27-CD11b+ NK cells in both bone marrow and periphery [82]. In 

addition, the remaining cells exhibited altered surface expression of several NK cell receptors 

and reduced cytotoxicity. These changes were not rescued in SPPL3-/D271A NK cells 

expressing the inactive SPPL3-D271A mutant which demonstrates a requirement of the 

SPPL3 proteolytic activity in this cell type. The substrate responsible for this specific 

phenotype of SPPL3-deficient or mutant mice is currently unknown. In line with studies in 

SPPL3-deficient murine embryonic fibroblasts (MEFs) [30], SPPL3-/- NK cells exhibited 

increased levels of the glycosyltransferase MGAT5. Interestingly, when analysing lectin-

binding by these cells, no indication for a major hyper-glycosylation of cell-surface proteins 

was obtained. Therefore, it seems rather unlikely that disturbed protein glycosylation is the 

predominant underlying mechanism of the NK cell phenotype [82]. 

In cell-based experiments, a protease-independent function of SPPL3 in T cells has 

been unravelled [85]. SPPL3 knockdown in Jurkat T cells diminished the cytosolic Ca2+ entry 

and activation of the transcription factor NFAT upon activation of the T cell receptor (TCR). 

SPPL3 was found to facilitate the interaction of the ER protein STIM1 and the calcium 

channel Orai1 which is a key element of Store-operated calcium entry (SOCE) critically 

involved in T cell activation but also signal transduction in other immune and non-immune 

cells [86]. The differentiation of T cells was not negatively affected by SPPL3 deficiency 

which was demonstrated by normal numbers of CD4+ and CD8+ T cells in spleens of Vav1-

iCre SPPL3 knockout mice [82]. Therefore, these mice should represent a perfect system to 

evaluate the impact of SPPL3 on TCR signal transduction in primary murine T cells. Provided 

that the findings generated in Jurkat cells can be recapitulated in this system one may expect 
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major impairments of T cell-dependent immune responses in these mice. The critical role of 

SOCE is not limited to T cells. Therefore, further studies based on the conditional SPPL3 

allele in order to systematically analyse consequences of SPPL3 deficiency in different tissues 

seem to be mandatory with regard to its impact on Ca2+ signalling and protein glycosylation. 

It seems likely that additional yet unknown substrates and/or molecular functions of this 

protease will be revealed. 

 

3. Inhibitors of SPP/SPPL proteases  

Since the physiological function of SPP/SPPL proteases is more and more understood, their 

role in pathophysiological contexts, like cancer, malaria, virus infections and immune 

deficiencies, also becomes more evident [23]. Moreover, presenilins play a key role in the 

development of Alzheimer disease [87, 88]. Thus, development of efficient and specific 

inhibitors is one central aspect in GxGD protease research. So far, however, it has not been 

possible to identify inhibitors for all members of the SPP/SPPL family and compounds that 

specifically target only one member of the protease family are still missing. 

 Structures of selected known inhibitors of SPP/SPPL intramembrane proteases are 

depicted in Fig. 2 and their reported effects on the individual members of the SPP/SPPL 

family as well as γ-secretase are compiled in Table 2. Since proof of proteolytic activity for 

SPPL2c is pending, no information about its potential inhibitory profile is available. In 

general, a direct comparison of data from different studies regarding the effectivity of these 

compounds towards the individual SPP/SPPL proteases is challenging due to significant 

differences in the employed assay systems. SPP-mediated proteolysis has been reconstituted 

either using CHAPS-solubilised, in vitro translated SPP from microsomes or SPP expressed 

in E.coli which allowed testing of inhibitors in vitro [89, 90]. In contrast, such assay formats 
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have not been established yet for SPPL2a/b and SPPL3 so that the evaluation of inhibitors has 

to rely entirely on cell-based set-ups, either as a reporter assay [64] or simply by Western blot 

analysis of substrate cleavage [91]. In such systems, also the membrane-permeability as well 

as the affinity to cellular multi-drug export proteins will significantly influence the 

effectiveness of any compounds in addition to their immediate inhibitory potential. This may 

be particularly relevant regarding the effect on intracellularly located SPP/SPPL proteases and 

may explain why in cell-based assays much higher compound concentrations are required for 

effective inhibition of SPP as compared to in vitro set-ups [89]. Considering a therapeutic 

perspective, of course many additional compound characteristics like its toxicity, enteral 

absorption, tissue permeability and metabolism would need to be considered and optimised. 

 Prior to identification of SPP as the responsible protease, 1,3-di-(N-carboxybenzoyl-L-

leucyl-L-leucyl) amino acetone ((Z-LL)2-ketone) was found to inhibit signal peptide 

processing [92]. Subsequently, a photocrosslinkable biotin-containing derivative of 

(Z-LL)2-ketone was used to isolate and identify SPP [3]. (Z-LL)2-ketone is a transition state 

analogue, which mimics leucine-rich hydrophobic amino acid sequences present in many 

substrates of SPP/SPPL proteases, and consequently inhibits substrate processing not only by 

SPP [89] but also by SPPL2a and SPPL2b [4, 5, 29, 47, 91]. This suggests that 

(Z-LL)2-ketone directly targets the active site of SPP/SPPL proteases, although the formal 

proof for this assumption is still missing. However, SPPL3 is not inhibited by this compound 

in a cellular context [6]. Importantly, (Z-LL)2-ketone has no effect on γ-secretase [89] which 

makes it unique among all currently known SPP/SPPL protease inhibitors (Table 2). Given 

that (Z-LL)2-ketone is an active site inhibitor these observations indicate spatial differences in 

the active site architecture already between different SPP/SPPL proteases, but most 

importantly between SPP/SPPLs and γ-secretase. Thus, (Z-LL)2-ketone may be regarded as a 

proof-of principle that the development of γ-secretase sparing SPP/SPPL inhibitors is possible 
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which will have important implications for a therapeutic setting. Beyond this advantage, 

however, the applicability and effectiveness of (Z-LL)2-ketone in cell-based set-ups is limited 

since concentrations of up to 100 µM are needed to achieve detectable inhibition [64]. 

 Based on a similarity of the active centres, some activity-based probes developed to 

label γ-secretase also react with SPP [93, 94]. Similarly, several active site targeted -

secretase inhibitors (GSIs), like L-685,458 [95, 96] or LY-411575 [97], also reduce SPP, 

SPPL2a and SPPL2b activity [29, 47, 89, 91, 98]. Again, these compounds fail to block 

SPPL3 [6], indicating that -secretase, SPP, SPPL2a and SPPL2b share a common structure in 

their catalytic centre, that is not conserved in SPPL3. Presumably, the binding position of 

these GSIs within the active site of GxGD proteases slightly differs from that of 

(Z-LL)2-ketone which does not target -secretase. Experiments with synthetic helical peptides 

that mimic the substrates of GxGD proteases led to the hypothesis that the site of initial 

substrate binding (“docking site”) in GxGD proteases differs from that of proteolysis [99]. 

Photoaffinity-labelling experiments of SPP and presenilins suggested that -secretase 

substrate mimetics and transition state analogues bind to different sites in these proteases [99, 

100]. Binding of these helical peptides to other members of the SPP/SPPL family has not 

been examined yet. N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester 

(DAPT), another peptide-based GSI, specifically targets the C-terminal fragment of presenilin 

at a position distinct from the catalytic site and thereby inhibits -secretase activity [101]. 

However, it does not block catalytic activity of SPP/SPPL family members [6, 69, 89, 91] 

pointing to a binding site that is only present in the -secretase complex but not in SPP/SPPL 

proteases. As demonstrated by the use of an A/Bri2 chimeric substrate, the GSIs 

Compound E and DBZ fail to inhibit SPPL2b, although the catalytic activity of SPP, SPPL2a 

and -secretase is blocked [91, 102, 103], revealing subtle differences in the active site even 

within one subfamily of SPPL proteases.  
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 A recent chemical biological approach used active site-directed photophore walking 

probes based on the GSI L-685,458 to analyse differences between the active sites of SPP and 

presenilins [104]. As expected, several non transition state GSIs blocked labelling  of γ-

secretase by the different activity-based probes. Surprisingly, these compounds, in particular 

avagacestat [105] and semagacestat [106], enhanced labeling of SPP [104]. At least, the SPP-

mediated cleavage of the Hepatitis virus core protein [51] does not seem to be influenced by 

these two GSIs. To what extent they can inhibit SPP activity in other assay systems has not 

been reported yet. However, these findings indicate that these inhibitors act in a different 

manner on the active site of these two GxGD proteases. Altogether, these findings in 

conjunction with the profiles of GxGD protease inhibitors currently available (Table 2) 

indicate that the active site architecture, though highly conserved in the primary structure, 

differs more than initially anticipated between the individual protease family members. 

However, so far, it is not obvious how existing compounds can be modified to specifically 

target only one individual SPP/SPPL family member and the particularities of the SPPL3 

active site remain enigmatic. Since the knowledge on the SPP/SPPL cleavage sites within 

their substrates and on their individual preferences of substrate recognition are still very 

limited, optimisation of peptide-based active site inhibitors is additionally complicated. To 

finally identify the precise binding sites of the individual compounds to the enzymes and 

elucidate the exact mechanism of inhibition, co-crystallisation of the respective inhibitors and 

proteases is required. Due to the pronounced hydrophobicity and integration into the lipid 

environment of cellular membranes this is a technically demanding task that, so far, has not 

been successfully solved for any vertebrate SPPL/SPPL protease. The atomic structure of the 

human -secretase complex has recently been solved [107], however co-crystals with the 

different inhibitors are still pending. 
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4. Lessons from clinical studies with γ-secretase inhibitors 

Though therapeutically applicable SPP/SPPL inhibitors are not yet available, GSIs have been 

under intensive clinical investigation. Among the nearly 100 proteins cleaved by γ-secretase 

[21], processing of the Amyloid Precursor Protein (APP) and the Notch1 receptor may be 

regarded as the clinically most relevant substrates. The proteolytic activity of γ-secretase 

plays a pivotal role in Notch1-dependent signal transduction [57]. Notch1 as well as the 

closely related other Notch receptors are major regulators of cell fate decisions, cellular 

proliferation and differentiation [108]. Upon binding of their ligands like Jagged and Delta on 

neighbouring cells, Notch receptors are cleaved in their extracellular domain by ADAM 

proteases thereby generating a Notch C-terminal stub. This protein fragment then is further 

processed by γ-secretase to liberate the Notch intracellular domain (NICD) to the cytosol 

which subsequently translocates to the nucleus to alter gene transcription [57, 108]. 

Importantly, Notch-dependent signalling is dysregulated in several types of cancers including 

various leukemias, making this pathway an attractive therapeutic target [109]. 

A primary rationale for the development of GSIs was the role of γ-secretase in APP 

processing where the intramembrane cleavage liberates the neurotoxic, aggregation-prone Aβ 

peptides that are a hallmark of Alzheimer disease [87, 110]. By blocking the generation of this 

amyloidogenic protein fragment, it was hoped that neurodegeneration could be prevented or at 

least significantly slowed down. Therefore, several highly effective GSIs have been 

developed and in some cases even pushed forward to clinical trials [111]. However, as a 

major limitation in these studies severe adverse effects were observed. In case of the Eli Lilly 

compound Semagecestat a randomised, double-blind and placebo-controlled phase III trial 

with more than 1500 Alzheimer disease patients was performed [112]. Many patients treated 

with semagacestat experienced gastrointestinal side-effects, hypopigmentation of hair and 

eyelashes and developed non-melanoma skin cancers presumably reflecting the GSI-induced 
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impairment of Notch processing and signalling [112]. Furthermore, the compound did not 

have the anticipated effects on cerebrospinal fluid levels of the Aβ fragments and, even worse, 

caused a more severe cognitive decline than observed in the placebo-treated control group 

leading to the early termination of this trial [112]. Obviously, the described side-effects may 

be considered especially problematic in a therapeutic setting where long-term treatment would 

be required as in the case of Alzheimer disease. A potential contribution of SPP/SPPL 

proteases to the toxicity of -secretase-inhibitors is currently underexplored since several of 

them including the clinical phase compound RO4929097 also inhibit SPP [51]. Beyond 

dementia, therapeutic -secretase inhibition, e.g, by MK-0752 and RO4929097, may have a 

potential benefit in oncology where blocking procarcinogenic Notch signalling would be the 

primary target. Here, the threshold of tolerable side-effects may also be higher due to a 

limited duration of therapy and the considerable adverse effects associated with alternative 

cytostatic treatments. Currently, several phase I and phase II clinical trials with patients 

suffering from malignant central nervous system tumours like glioma and astrocytoma as well 

as other cancers are conducted [113-115]. 

What these trials mean for the future of γ-secretase as a drug target in general and 

GSIs in the in the treatment of Alzheimer disease has been discussed elsewhere [116, 117]. 

Here, we aim to highlight those insights that have implications for the ongoing development 

of SPP/SPPL family inhibitors. Based on the side-effects that can be associated with γ-

secretase inhibition, it will be of pivotal importance to develop SPP/SPPL inhibitors that 

completely spare γ-secretase. Otherwise applicability of these compounds may experience 

similar limitations as semagacestat [112]. As described, so far all known SPP/SPPL family 

inhibitors except (Z-LL)2-ketone also target γ-secretase [89] (Table 2). 

One major pitfall in the clinical trials of for example Semagecestat was presented by 

the lacking discrimination of the inhibitor for processing of different -secretase substrates 
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since this compound blocks proteolysis of APP as well as Notch1 with a comparable 

efficiency [118]. Transferred to the development of SPP/SPPL inhibitors this clearly 

highlights the need for compounds that selectively target individual family members and – if 

possible – individual protease-substrate-pairs. This notion is further strengthened by the 

severe phenotypes of especially SPP- and SPPL3-deficient mice that show embryonic or 

perinatal lethality on a C57BL/6 background, respectively [51, 82]. To selectively block 

proteolysis of specific SPP/SPPL substrates, as it was attempted with the development of 

Notch-sparing GSIs [111], may seem challenging and rather speculative at the moment. In 

contrast, at least the design of protease-specific inhibitors appears more realistic which is 

supported by the significantly different effects of the currently known compounds on the 

individual SPP/SPPL proteases (Table 2). Even for the very closely related proteases SPPL2a 

and SPPL2b with a broadly overlapping substrate spectrum Ran et al. observed with their 

A/Bri2 model substrate that SPPL2a was inhibited about 12- and 100-fold more effectively 

by (Z-LL)2-ketone and LY-411575, respectively, than SPPL2b. In contrast, L685,458 

exhibited a comparable efficacy against both proteases [91]. Further modification of already 

existing molecules as well as high throughput screening for novel lead compounds will be 

required to develop specific inhibitors of individual SPP/SPPL proteases. 

 

5. SPP/SPPL proteases as therapeutic targets 

In the following we will discuss and speculate about potential disease contexts where 

SPP/SPPL protease inhibitors may be beneficial. Starting with SPP itself, the knowledge on 

the pathophysiological functions is very limited as pointed out before. Nevertheless, two 

putative applications of SPP inhibitors have been proposed: certain viral infections and 

malaria. Whereas in the first case the host cell’s SPP is involved in processing newly 

synthesised viral proteins, in malaria the parasite’s SPP is critical for the well-being of the 
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pathogen. This means that either the human or the plasmodium SPP would need to be targeted 

by inhibitors. Regarding a systemic inhibition of SPP in humans, potential toxicity and side-

effects of this approach will need to be carefully investigated since a constitutive knockout in 

mice leads to perinatal lethality. This may be less problematic in the context of malaria. 

Human and plasmodium SPP showed significant differences in their affinity to some GSIs 

[91]. Therefore, the design of a potent inhibitor of plasmodium SPP which only mildly acts on 

human SPP and the SPPLs may seem realistic and should prevent any adverse effects due 

cross-inhibition of host proteases. We will briefly summarise the available experimental 

evidence on the role of SPP in viral infections and in plasmodium parasites on which the ideas 

to exploit this therapeutically are based. 

 

5.1 The role of host cell SPP in viral infections 

SPP is involved in the processing of several viral proteins, of which the Hepatitis C Virus 

(HCV) core protein was the first discovered and consequently represents the best studied 

example [119]. Core proteins from HCV-related viruses like the GB virus B (GBV-B) and the 

hepacivirus (EHcV) are processed in a similar way [42, 120]. HCV is a human-pathogenic 

RNA virus causing chronic hepatitis with a high risk of progression to liver cirrhosis and the 

development of hepatocellular carcinoma [121]. In an infected cell, the viral proteins are 

synthesised as a polyprotein composed of the amino terminal structural proteins core, E1 and 

E2 as well as non-structural proteins. An internal signal sequence between the core and the E1 

protein directs the nascent protein to the ER and induces translocation of the E1 protein into 

the ER lumen. There, the E1 protein is cleaved off by signal peptidase, leaving the core 

anchored to the ER membrane via the remaining signal sequence (Fig. 3A) [122], which is 

further processed by SPP [119, 123]. In line with the substrate requirements of SPP and most 

SPPL proteases, the preceding cleavage of the core protein by signal peptidase seems to be a 
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prerequisite for further processing by SPP [124]. After cleavage by SPP, the mature core 

protein translocates from the ER to lipid droplets for virus assembly [119, 125]. Extensive 

mutagenesis studies have been performed and revealed several residues within the 

hydrophobic signal peptide region that are critical for SPP cleavage with some differences 

between HCV sub-strains [26, 39, 43, 119, 125-128]. Cleavage and maturation of HCV core 

protein could be blocked by (Z-LL)2-ketone [26, 124, 125, 127], L685,458 [128], LY-411575 

[51, 98] and RO4929097 [51] in cell culture models. Furthermore, pharmacological 

inhibition, downregulation of SPP protein by siRNA or expression of processing-resistant 

core protein mutants led to reduced viral production [39, 43, 51, 98, 128, 129]. Based on 

experiments in cultured cells, modulation of SPP activity appears to be a promising approach 

to suppress virus propagation. Since rodents are not susceptible to HCV infection, 

experimental in vivo evidence for this concept cannot be easily obtained [130].  

Beyond its role in virus production, the HCV core protein was shown to interact with a 

variety of host cell proteins and may directly be involved in inducing pathological changes 

associated with HCV infection [122]. Transgenic expression of this protein in mice induces 

liver steatosis, insulin resistance and hepatocellular carcinoma [51, 122]. Unexpectedly, 

Aizawa et al. observed that SPP inhibition did not induce a significant accumulation of the 

uncleaved immature core protein but rather led to its depletion because it was subjected to 

proteosomal degradation dependent on the ubiquitin ligase TRC8 [51]. Therefore, SPP 

inhibition significantly reduced the overall cellular core protein levels in cultured cells. This 

effect could be recapitulated in HCV core transgenic mice upon administration of LY-411575. 

This treatment also significantly improved lipid accumulation and insulin resistance 

associated with transgene expression [51]. Importantly, a similar improvement of these core 

protein-induced phenotypes was observed with a heterozygous SPP knockout allele (SPP+/-) 

bred into this transgenic line. Though a constitutive SPP knockout in mice is lethal, 
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heterozygous animals are not detectably compromised [51]. This indicates that SPP inhibition 

upon HCV infection may not only be beneficial by blocking virus propagation, but also by 

preventing pathogenetic effects of the HCV protein itself by inducing its proteasomal 

degradation. Based on the positive effects in SPP+/- mice, it seems possible that for the latter 

mechanism already a partial inhibition of SPP could be sufficient which would of course 

significantly reduce the risk of any toxic side effects. Still, no prophylactic vaccine in order to 

prevent HCV infection is available [121]. Though antiviral therapeutics can cure many 

patients, treatment fails in some cases where an additional therapeutic defence line based on 

SPP could be of use. 

 In addition to HCV, also the core protein of the classical swine fever virus [131] and 

the glycoprotein precursor of the Bunyamwera orthobunyavirus [132] were found to be 

processed by SPP. In the latter case, knockdown of SPP impaired spreading of viruses from 

infected to neighbouring cells [132]. This argues for a functional relevance of the identified 

proteolytic cleavage in the infection cycle [132]. Since some members of the Bunyavirus 

family are serious human pathogens, this finding will deserve further investigations.  

 Moreover, SPP has been implicated in infections with Herpes simplex-1 (HSV-1) and 

Human Cytomegaly (CMV) viruses, both belonging to the family of Herpesviridae. The virus 

replication of HSV-1 in infected rabbit skin cells was reduced upon shRNA treatment against 

SPP, overexpression of dominant negative SPP as well as pharmacological inhibition of the 

protease [133, 134]. A suppression of HSV-1 replication was also seen upon administration of 

(Z-LL)2-ketone to the eyes of ocularly infected mice [134]. Mechanistically, SPP was shown 

to interact with the viral glycoprotein K as identified in a yeast two-hybrid screen [133]. How 

precisely the proteolytic activity of SPP is involved in this context has not been examined yet. 

This also applies to a role of SPP upon CMV infection. There, SPP was found to be part of a 

central immune evasion mechanism of the virus, which involves a downregulation of MHCI 
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complexes induced by the viral protein US2 [135]. Altogether, these various examples 

indicate that the function of SPP in viral infection should be further explored and that SPP 

inhibitors may of potential benefit in this area. 

 

5.2. The role of SPP in Plasmodium parasites 

Malaria is a zoonosis caused by protozoan Plasmodium spp parasites transmitted by 

Anopheles mosquitoes [136]. In humans, the parasite initially infects hepatocytes, but 

subsequently replicates in erythrocytes [136]. All Plasmodium species share one SPP 

homologue (PlSPP) with approximately 30% identity to human SPP [137]. Similar to 

mammalian SPP, also PlSPP localises to the endoplasmic reticulum [138, 139]. Several 

groups could show susceptibility of PlSPP to (Z-LL)2-ketone [91, 137, 138] as well as GSIs 

like L-685,458 [91, 138] or LY-411575 [91, 137, 140]. It should be mentioned that proof of 

proteolytic activity so far largely relies on processing of artificial model substrates (Fig. 3B). 

The only reported plasmodium-intrinsic substrate is the signal peptide of the HSP101 protein, 

a component of the protein export machinery [138]. However, also in this case evidence is 

limited to overexpression systems. Thus, altogether physiological substrates of PlSPP remain 

largely elusive to date. 

 Li et al. report that in multiple attempts to disrupt the PlSPP gene no viable parasites 

were obtained from which they conclude an essential role of this protease in Plasmodium 

falciparum [141]. In agreement with this, pharmacological inhibition of SPP resulted in 

impaired parasite growth [139-142]. Mechanistically, it was shown that SPP inhibition 

sensitises the parasites to ER stress [140]. This points to a role of PlSPP in the ERAD process 

(Fig. 3B) which agrees well with recently obtained similar findings on mammalian and yeast 
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SPP [50, 52]. In general, a reduced number of ERAD proteins in Plasmodium as compared to 

mammalian cells could account for its high sensitivity to ER stress [140]. 

Still under debate is the developmental stage of Plasmodium being affected by PlSPP 

inhibition. Parvanova et al. showed impaired plasmodium replication within hepatocytes in 

cultured as well as in vivo models upon treatment with LY411,575 [142]. Parasite invasion 

into these cells was not affected and rather minor effects were observed on blood stages of the 

parasite [142]. Harbut et al. confirmed these findings using the mouse-infecting malaria 

species P. yoelii and the hepatocyte cell line HepG2 and found parasite load to be reduced by 

NITD731, NITD679 and LY411,575 [140]. In contrast, Li et al. found specifically 

erythrocyte invasion and growth within these cells affected by SPP inhibition [141]. The 

effects on intraerythrocyte parasite growth were confirmed by Marapana et al. [139], 

however, the invasion of P. falciparum into red blood cells was not impaired in this study 

[139]. 

In light of potential side-effects it seems encouraging that the determined IC50 values 

of different SPP inhibitors on Plasmodium yoelli replication in HepG2 cells were in the low 

nanomolar range whereas impairment of host cell growth was only seen beyond a 

concentration of 10 µM [140]. Possibly, this can be further improved by designing inhibitors 

with a higher affinity to PlSPP than to mammalian SPP and SPPL proteases. If this can be 

achieved, PlSPP appears to be an attractive new concept for the treatment of malaria.  

With estimated several millions of Plasmodium infections each year, malaria is still a 

major reason of morbidity and mortality in many parts of Africa, Asia and Latin America 

[143]. Resistance of the parasites against commonly used therapeutics as well as of the vector, 

Anopheles mosquitoes, against many insecticides makes this disease an ongoing medical 

problem [143]. In this context, new potential drug targets like PlSPP may help to improve the 

situation. 
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5.3. Could SPPL2a inhibitors serve as immunosuppressants? 

Based on the distinct immunological phenotype of SPPL2a-deficient mice in the absence of 

any major disabilities, we and others have proposed that pharmacological SPPL2a inhibition 

may be useful to deplete B cells and dendritic cells in order to treat autoimmunity [29, 58, 

59]. Our current preliminary understanding of the mechanisms involved in this phenotype, 

which is induced by the accumulation of the uncleaved CD74 NTF [29], are summarised in 

Fig. 4. In SPPL2a-deficient B cells, CD74 NTF disturbs endocytic membrane trafficking 

leading to the accumulation of characteristic endosome-derived vacuoles [29]. Presumably, 

this trafficking alteration is directly or indirectly responsible for the reduced surface presence 

of two receptors with a central role in B cell maturation: BAFF-R, the receptor for the 

cytokine BAFF (B cell-activating factor) and the B cell antigen receptor (BCR). In case of the 

BCR, a redistribution of the receptor to intracellular compartments has been observed [144]. 

Since signals from both the BAFF-R as well as the BCR are required for the survival of 

transitional stage B cells in order to progress to functional maturity, depletion of these two 

receptors likely plays a critical role for the B cell maturation defect.  

With regard to the BCR, the downstream signalling responses of this receptor, in 

particular the PI3K/Akt/FOXO axis, are disturbed in SPPL2a-/- B cells [144]. In addition to 

the CD74 NTF-induced mis-sorting of the receptor, also direct inhibitory effects of this 

accumulating fragment on kinases, which are part of this pathway, seem conceivable [144]. 

Interestingly, enhanced signalling of the BAFF-R and the BCR have been implicated in the 

development of autoimmunity [145], which may be counteracted by an inhibition of SPPL2a. 

Deeper insights are required regarding the precise molecular interaction partners of the CD74 

NTF that are responsible for inducing these striking cellular changes. Furthermore, nothing is 

known about the mechanisms leading to the loss of DCs in SPPL2a-deficient mice. Since the 
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BAFF-R and the BCR are B cell specific receptors, the described findings cannot be 

immediately transferred to DCs. 

 Beyond a better understanding of the precise mechanism, several prerequisites would 

need to be fulfilled to pursue SPPL2a inhibition as a therapeutic approach. First of all, potent, 

SPPL2a-specific inhibitors sparing γ-secretase and also other SPP/SPPL proteases, which are 

not involved in CD74 proteolysis [60], would be needed. Currently, it remains elusive if the 

pathways triggered by the CD74 NTF in murine cells work equivalently in humans and lead 

to a depletion of B cells and/or DCs like in mice. In addition to the initiation of immune 

responses, DCs also play a central for the maintenance of immunological tolerance. 

Therefore, in some cases a global DC depletion in mice has resulted in autoimmune pathology 

[146]. This is apparently not the case in SPPL2a-deficient mice. Nevertheless, a more detailed 

analysis of the impact of SPPL2a deficiency/ inhibition on different DC subsets and the 

functionality of the remaining DCs with regard to cytokine secretion and in particular 

migration, which is influenced by CD74, is strongly advocated [147]. The SPPL2a-/- mouse 

models analysed to date exhibit a constitutive ablation of this gene. An important question 

will be if a therapeutic SPPL2a inhibition - even if it could impair the production of new 

B cells - would also be capable to significantly lower titers of pre-formed auto-antibodies. To 

a large extent, antibody-secreting plasma cells lose the expression of their antigen-

presentation machinery including CD74 [148]. Therefore, it is unclear if these cells could be 

effectively targeted by SPPL2a inhibitors. At least some insights into this aspect, could be 

obtained by analysing inducible SPPL2a knockout mice. However, the positive effects of 

B cell depletion in autoimmunity do not seem to be limited to the reduction of autoantibodies 

as revealed by mouse models with B cells incapable of immunoglobulin secretion [149]. 

Furthermore, also in patients positive clinical responses to B cell depletion were observed 

despite persisting autoantibodies [145, 150, 151]. In general B cell depletion has proven to be 
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beneficial in a number of autoimmune diseases including systemic lupus erythematosus [152], 

rheumatoid arthritis [153], anti-neutrophil cytoplasmic autoantibody-associated vasculitis 

[154], primary membranous nephropathy [155], pemphigus vulgaris [156] and multiple 

sclerosis [157]. In all these trials, targeting of B cells was achieved with the therapeutic 

antibody rituximab directed against the B cell antigen CD20. Obviously, it would have a 

variety of practical advantages, including the possibility of oral administration, if a similar 

outcome could be achieved with a small molecule SPPL2a inhibitor. Possibly, the presumed 

concurrent depletion of DCs may even lead to increased efficacies over established 

therapeutics. Therefore, provided that the above discussed prerequisites can be successfully 

met, SPPL2a inhibition may represent a promising approach for therapeutic 

immunosuppression.  

 

5.4. Possible perspectives for SPPL2b, SPPL2c and SPPL3? 

In contrast to the therapeutic potential of SPP and SPPL2a, much less is known about the 

physiological functions of the remaining SPP/SPPL-family members. Therefore, a possible 

clinical benefit from inhibiting these proteases is currently speculative. With regard to 

SPPL2b, its role in the central nervous system will certainly deserve further investigation and 

may reveal possible applications. If involvement in any pathophysiologically relevant 

pathway can be unravelled, SPPL2b may become a near-ideal target. Since SPPL2b-deficient 

mice show no major overt phenotype, the risk of adverse effects may be rather low. In the 

case of SPPL2c, the link to IPF is of potential medical interest. However, this is so far only 

based on genetic association data. If an impact of SPPL2c on the pathophysiology of this 

disease can be consolidated, therapeutic modulation of SPPL2c activity may become of 

interest at some point. In light of the major impact of SPPL3 on cellular protein glycosylation 

pathways, a systemic inhibition of this protease may be risky. Nevertheless, based on the NK 
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cell phenotype of SPPL3-deficient mice therapeutic targeting of this cell type in disorders 

with NK cell autoreactivity [158] could be envisaged. 

 

6. Conclusions 

Despite major progress over the last years, our understanding of the pathophysiological 

functions of SPP/SPPL proteases is far from complete. Further work is required especially in 

those cases where constitutive knockouts in mice are lethal. The generation and analysis of 

tissue and cell type-specific knockout mice will hopefully fill this gap. In particular for SPP, 

this will be crucial in order to decipher potential side effects of therapeutic SPP inhibitors. 

Nevertheless, based on already available data promising perspectives for the two family 

members SPP and SPPL2a as therapeutic targets have been revealed which deserve further 

attention. However, to pursue this, major efforts for the identification and/or design of novel 

potent and specific inhibitors is an essential prerequisite. It can be expected that this will go 

along with exciting insights regarding the active centre geometry and cleavage mechanism of 

individual SPP/SPPL proteases as well as γ-secretase.  
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TABLES 

 

Table 1. Reported phenotypes of SPP/SPPL knockout mice 

I-CLIP Knockout Phenotype Involved 
Substrates 

Reference 

SPP Constitutive Embryonic lethality Unknown [51] 

SPPL2a Constitutive 

Arrest of splenic B cell maturation CD74 [29, 58, 59] 

Reduction of dendritic cells  CD74 [58-60] 

Tooth enamel mineralisation defect Not known [68] 

SPPL2b Constitutive Viable, no specific phenotype reported yet. 
 

[60] 

SPPL2a/ 
SPPL2b 

Constitutive 

Arrest of splenic B cell maturation CD74 [60] 

Reduction of dendritic cells  CD74 [60] 

Tooth enamel mineralisation defect Not known [60] 

SPPL2c  Not reported yet - - 

SPPL3 

Constitutive 
(C57/Bl6 J) 

Perinatal lethality Not known [82] 

Constitutive 
(C57BL/6;129S5) 

Viable , growth retardation Not known [83] 

Reduction of NK cells Not known [83] 

Male sterility Not known [83] 

Hematopoetic cells 
(Vav1-iCre) 

Impaired NK cell maturation and function Not known [82] 

NK cells  
(NKp46-iCre) 

Impaired NK cell maturation and function Not known [82] 
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Table 2. Inhibitory profile of different GxGD-type proteases. 

 

+ : Inhibition ; -: No effect of inhibitor; ±: Weak effects; ? Conflicting reports; 

  

 m/hSPP PfSPP SPPL2a SPPL2b SPPL2c SPPL3 -secretase 

(Z-LL)2-ketone + [89, 92] + [137, 138] + [47] + [4, 47] No data - [6] - [89] 

L-685,458 + [89] + [138] + [47] + [47] No data - [6] + [95] 

LY-411,575 + [22] + [137] + [91] + [91] No data No data + [97] 

DAPT - [22] - [138] - [91] - [6, 91] No data - [6] + [159] 

DBZ + (91) - (91) ± (91) - (91) No data No data + (158) 

GSI II + (91) + (91) + (91) + (91) No data No data + [160] 

RO4929097 + [51] No data No data No data No data No data + [161] 

Semagecestat - [51] No data No data No data No data No data + [106] 

Avagecestat - [51] No data No data No data No data No data + [105] 

MK-0752 - [51] No data No data No data No data No data + [162] 

Compound E ? [22, 91] - [91] ± [91] - [91] No data No data + [102] 
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FIGURE LEGENDS 

Fig.1: Comparison of SPP/SPPLs and γ-secretase. Even though sharing highly conserved 

catalytic motifs in transmembrane domains 6, 7 and 9, SPP/SPPL proteases greatly differ 

from γ-secretase. While γ-secretase requires the formation of a heterotetrameric complex 

consisting of Aph1, Pen2, Nicastrin and the catalytic presenilin subunits for its activity, 

SPP/SPPL proteases either act as mono- or homodimers. Furthermore, SPP/SPPL proteases 

present an inverted topology if compared to the presenilins which is also reflected by the 

differential requirements regarding substrate orientation in either type II or type I topology, 

respectively. 

 

Fig. 2. Known inhibitors of SPP/SPPL proteases. Chemical structures of the so far only 

available selective SPP/SPPL family inhibitor (Z-LL)2-ketone and the mixed γ-

secretase/SPP/SPPL inhibitors L-685,458, LY-411575 and Compound E are depicted. For 

comparison, structures of the selective γ-secretase inhibitors DAPT and Semagecestat are 

displayed. Structures were drawn using ChemSketch software. 

 

Fig. 3. Scheme for potential applications of SPP inhibitors. A Inhibitors targeting SPP 

might be applied for treatment of HCV infections based on the requirement for SPP for the 

processing of the immature HCV core protein. Pharmacological targeting of endogenous SPP 

inhibits cleavage of the immature HCV core protein thereby preventing its transport to lipid 

droplets and therefore also viral assembly and propagation. B Inhibition of Plasmodium SPP 

(PlSPP) could be of clinical relevance for fighting malaria infections. Even though the precise 

mechanism underlying toxicity of SPP inhibitors for Plasmodium still remains enigmatic, 
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blocked SPP-mediated proteolysis might cause ER stress leading to an altered Plasmodium 

life cycle and growth inhibition. 

 

Fig. 4. Scheme for potential applications of SPPL2a inhibitors. SPPL2a inhibitors may be 

of use for treatment of B cell-mediated autoimmune disease. Blocking SPPL2a activity leads 

to endolysosomal accumulation of the CD74 N-terminal fragment (NTF), thereby disturbing 

vesicular membrane trafficking. Increased levels of this fragment also cause intracellular 

sequestration of B cell receptors as well as downregulation of BAFF receptors on the surface 

of B cells. Furthermore, by a yet unknown mechanism, the accumulating CD74 NTF 

decreases tonic and induced survival signalling downstream of the BCR leading to a 

maturation arrest in the early splenic T1 stage.  
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